
qUNCLASSIFIED
SECUR:

"r
, CLASSfr,AO- k Or 74IS OG{ fWhen Dal& Entered'

REPORT DOCUMEN[ATI ON PAGE , ,' o
B~rO O ,LRI g , FOP-

1. RIPORI NLJBiR 12. 60V7 ACCESSIOA NO. 3. RECIPE 'N'S CATALOG SNiU E! R

4. TITLE (andiubrtie) 5. TYPE Of REPOR! & PERO: COVERLD

Ada Compiler Validation Summary Report: Alsys, 14 March 89 - 1 Dec 90
AlsvCOMP_005, version 4.2, SUN 3/260 (host & target), 6. PERFORMINW'DRG. REPOR

890314A1 0037

7. A1THORWj 8. CONTRACT O1 6RAN7 kIMEEiR,)

AFNOR, Paris, France.

9. PERFDRNNI ORGANtZATIOk AND ADDRESS 10. PROGRAN ELEME . FPj! - TAS.,

ArNOR, Paris, France.

11. CO RO,.LING OFFICE ANE AND ADDRESS 12. REPOR 1 DATE
Ada Joint Program Office
United States Department of Defense .
Washington, DC 2E301-3081

14. NONITORING a(: . WANE & DDRES(If differentfrom Cont'z.'..v . %,- .
UNCLASSIFIED

AFNOR, Paris, France. j o. NA
N/A

16. DISTRIBUTION STATEMENT (ofthtsReport)

Approved for public release; distribution unlimited.

17. DIS RIT6.T O11 STA, EM ," (of the abnrac enteedin Block 20 ifa ,fferen? from Report)

UNCLASSIFIED DTIC
i[E. ?" L.EC1 E

19. SU .E t 10AR i OTES

19. IEYWODS (Continue on ,everie sd, ifnecesiery ond ,dentif, by block ,tumber)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC I (Continue on reverse side ,f necessary end identif) by, block number)

Alsys, AlsyCOMP_005, Version 4.3, AFNOR, France, SUN 3/260 under Sun OS release 3.2,

ACVC 1.10

90 01 00 0 12

AVF (o:vc, ;ur: AVF-VSF-AFNOlF-%-C2

Ada COMPILE, / ,'
VALIDATION SUMMARY REPORT:

Certificate Number: 890314A1.10037
Alsys

AlsyCOMP_005, Version 4.3
SUN 3/260

Completion of On-Site Testing:14 arch 1989 Accesion For

NTIS CR A&I

0i W T4 EJ
U:,,i.O,, ' ff:(J

Prepared By:AFNOR

Tour Europe ByCedex 7 D':lt(" I

F-92080 Paris !a Defense

'y

Dist J(CdI

Prepared For:
Ada Joint Program Office

United States Department of Defense
Vashington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_005, Version 4.3

Certificate Number: 890314A1.10037

Host: SUN 3/260 under Sun OS release 3.2

Target: SUN 3/260 under Sun OS release 3.2

Testing Completed 14 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

AFNOR
Fabrice Garnier de Labareyre
Tour Europe
Cedex 7
F-92080 Paris la Defense

-, 7

'Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

l.i PURPOSE OF THIS VALIDATION SUMMARY REPORT 5
1.2 USE OF THIS VALIDATION SUMMARY REPORT 5
1.3 REFERENCES. 7
i.4 DEFINITION OF TERMS 7
1.5 ACVC TEST CLASSES 8

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED. 10
2.2 IMLE!iENTATION CHARACTERISTICS .I. 11

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 16
3.2 SUMMARY OF TEST RESULTS BY CLASS 16
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 17
3.4 WITHDRAWN TESTS 17

3.5 INAPPLICABLE TESTS 17
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 21
3.7 ADDITIONAL TESTING INFORMATION 23
3.7.1 Prevalidation23
3.7.2 Test Method 23
3.7.3 Test Site 24

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

U

INTRODUCTION

CHAPTER 1

// INTRODUCTION

This Validation Summary Report VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A. This
report explains all technical terms used within it and thoroughly reports
the results -of testing this compiler using the Ada Compiler Validation
CapablityjiACVC).- An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the
requirements of the Ada Standard. The Ada Standard must be implemented in
its entirety, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it must
be understood that some differences do exist between implementations. The
Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types. Other
differences.between compilers result from the characteristics of particular
operating systems, hardware, or implementation strategies. All the
dependencies observed during the process of testing this compiler are given
in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity of
the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time,
at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was 6arried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by the
compiler bu" required by the Ada Standard

To determine that the implementat: n-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by under the direction of the AVF
according to procedures establ:shed by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO). On-site resting was
completed 14 March 1989 at Alsys SA. in La Celle Saint Cloud, FRANCE.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"(5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to t-he Ada'Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNCR
Tour Europe
cedex 7
F-92080 Paris la Defense

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Oraanization
institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Lanauage, ANSI/MIL-STD-

18!5A, February 1983, and ISO 8652-1987.

2. Ada Compiler Valida-ion Procedures and Guidelines, Ada Joint Program
Office, 1 January 1987.

3. Ada 7ompiler Validation Capazility Implementers' Guide, SofTech,
Inc. December 1986.

4. Ada Compiler Validation Capab:lity User's Gu:de, December 1986
7

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

INTRODUCTION

Inapplicable test An ACVC test that uses features of the language that
a compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable, and special
program units are used to report their results during execution. Class B
tests are expected to produce compilation errors. Class L tests are expected
to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled and
executed. There are no explicit program components in a Class A test to
check semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language) are
not treated as reserved words by an Ada compiler. A Class A test is passed
it no errors are detected at compile time and the program executes to
produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED, FAILED,
or NOT APPLICABLE message indicating the result when it is executed.

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED, or
FAILED message when it is compiled and executed. However, the Ada Standard
permits an implementation to reject programs containing some features
addressed b' Class E tests during compilation. Therefore, a Class E test is
pa'sed by a compiler if it is compiled successfully and executes to produce
a PASSED message, or if it is rejected by the compiler for an allowable
reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to execute.
Class L tests are compiled separately and execution is attempted. A Class L
test passes if it is rejected at link tame--that is, an attempt to execute
the main program must generate an error message before any declarations in
the main program or any units referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used to
defeat some compiler optimizations allowed by the Ada Standard that would
circumvent a test objective. The procedure CHECKFILE is used to check the
contents of text files written by some of the Class C tests for chapter 14
of the Ada Standard. The operation of REPORT and CHECKFILE is checked by a
set of executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is provided
in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests withdriwn
at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validaton was tested under the
following configuration:

Compiler: AlsyCOMP_005, Version 4.3

ACVC Version: 1.10

Certificate Number: 890314A1.10037

Host Computer:

Machine: SUN 3/260

Operating System: Sun OS release 3.2

Memory Size: 8 Mb

Configuration Information : MC68020 processor
MC 68881 floating-point coprocessor

Target Computer:

Machine: SUN 3/260

Operating System: Sun OS release 3.2

Memory Size: 8 Mb

Configuration Information : MC68020 processor
MC 68881 floating-point coprocessor

Communications Network: none

CONFIGURATION INFOR.ATION

22 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler i:. thosc areas of the Ada Standard that permit implementations to
differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementatrn. Th7 tests demonstrate the following characteristics:

a. Capacties.

(1) The compiler corre-t'l processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compl'er correctly processes tests contain' o le ;tatent
nested to 65 levels. (See tests D55A03A..H (8 tests).)

(3) The compiler correctly processes a test containing block .statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17 levels.
(See tests D64005E. .G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types,
SHORTINTEGER, LONGINTEGER, LONG_FLOAT in the package STANDARD.
(See tests B86001T..Z (7 tests).)

c. Based literals.

(1) An implementation is allowed raise NUMERICERROR or
COSTRANT__ERROR when a value exceeds SYSTEM.MAXINT . This
nplementation raises NUMERICERROR during execution. (See test

E2422CIA.)

d. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While the
ACVC tests do not specifically attempt to determine the order of
evaluation of expressions, test results indicate the following:

(1) Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to a
component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra b:ts for extra- range. (See test
C35903A.)

CONFIGURATION INFORMATION

(4) Apparently NUMER.C_ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) Apparently NUMERIC_ERROR is raised when a iiteral operand in a
fixed-point comparlson or membership test is outside the range of
the base type. (See test C45252A.)

(6) Apparently underflow is gradual. (See tests C45524A..Z.) (26 tests)

e. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. 'While the ACVIC tests do not specifically
attempt to determine the method of rounding, the test results indicate
the following:

(1) The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.) (26 tests)

(2) The method used for rounding to longest integer is apparently round
to even. (See tests C46012A..Z.) (26 tests)

(3) The method used for rounding to integer in static universal real
expressions is apparently round to even. (See test C4AOI4A.)

f. Array types.

An implementation is allowed to raise NUMERICERROR or CONSTRAINTERROR
for an array having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAXINT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM. MAX INT components raises NUMERICERROR !See test
C36003A.)

(2) NUMERICERROR is raised when 'LENGTH Is applied to an array type
with INTEGER'LAST + 2 components. (See test 36202A.)

(3) NUMERIC-ERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exce :ion. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. array objects are sliced.
(See test C52104Y.)

(6) In assigning one-dimensional array types, the expression appears to
be evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

CONFIGURATION INFORMATION

(7) In assigning two-dimensional array types, the expression does not
appear to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. A null array with one dimension of length greater than INTEGER'LAST may
raise NUMER:C_ERROR or CONSTRAINTERROR either when declared or
assigned. Alternatively, an implementation may accept the declaration.
However, lengths must match in array slice assignments. This
implementation raises no exception. (See test E52103Y.)

h. Discriminated types.

(i) In assigning record types with discriminants, the expression
appears to be- evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether tht expression's subtype is compatible
with the target's subtype. (See test C52013A.)

i. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type. (See
tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

(3) All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a non-null range of a non-null aggregate does not belong
to an index subtype. (See test E43211B.)

Pragmas.

(i) The pragma INLINE is supported for functions or procedures, but not
functions called inside a package specification. (See tests
LA3004A..B, EA3004C..D, and CA3004E..F.)

k. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAl012A, CA2009C, CA2009F, BC3204C, and
BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1i012A and CA2009F.)

(3) Generic library subprogram specifications and bodies. can be
compiled in separate compilations. (See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

CONFIGURATION: INFORMATION

(7 Q i n1on-Iira.y suzprooa:a! nooLes caL, sc co.;,ile, suvarait
CO:'La inatr.s fro.i weX:.r sTUjs. QSt: t S ,A2009F.;

WGuIcrC =1 bodcrs aiQc :aEir sunur±:s can DE corypic in separate
co.pzlations. (Se t S1O010A.1

(7) Generic pacKage declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic library package specifications and bodies car. be cnmpiled
in separate compilations. (See tests BC3204C and BC3205D.)

(9) Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3OiA.)

input and output.

(I) The package SEQUENTIAL_10 can be instantiated with unconstrained
array types and record types with discriminants witnout defaults.
(See tests AE2101C, EE220iD, and EE2201E.)

(2) The package DIRECT_10 can be instantiated with unconstrained array
types and record types with discriminants but CREATE will raise
USEERROR. (See tests AE210iH, EE240D, and EE2401G.)

(4) Modes INFILE and OUT-FILE are supported for SEQUENTIAL_IO. (See
tests CE2102D..E, CE2102J, and CE2102P.)

(5) Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T, and
CE2102V.)

(6) !odes IN_FILE and OUT-FILE are supported for text files. fSee tests
CE3102E and CE3102I..K.)

(7) RESET and DELETE operations are supported for SEQUENTIAL_10. (See
tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CE2102Y.)

(9) RESET and DELETE operations are supported for text files. (See
tests CE3102F..G, CE3l04C, CE3110A, and CE31i4A.)

(10) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(11) Temporary sequential files are given names and deleted when closed.
(See test CE21O8A.)

(12) Temporary direct files are given names and deleted when closed.
(See test CE2108C.)

CONFIGURATION INFORMATION

(13) Temporary text tiles are given names and deleted when closed. (See
test CE3::2A.)

(14) More than one internal file can be associated with each external
file for sequential files when reading or writing (See tests
CEZ107A..E, CE2102L, CE2110B, and CE2111:.

(15) More than one internal file can be associated with each external
file for direct files when reading or writing (See tests
CE2C7F..I, CE2110D and CE2111H.)

(16) More then one internal file can be associated with each external
file for text files when reading or writing. (See tests CE3!IA..E,
CE3114B, and CE3115A.)

TEST :NFORMAT:ON

CHAPE F

TEST INFORnATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests:. When :his compiler was
testeS, 43 +ests had been withdrawn because of test errors. The AVF
determined that 352 tasts were inapplicable to this implementation.
All inapplicable tests were processed during validation testing
except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. Modifications to the
code, processing, or grading for 51 tests were required. (See section 3.6.;

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

- - - - - - --A B C D E L____

Passed :29 1132 1972 17 26 46 3322

inappl:cable 0 6 344 0 2 0 3N2

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATbON

RESU T CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 4

Passed 198 577 555 248 172 99 161 332 137 36 252 257 296 3322

Inappl 14 72 125 0 0 0 5 1 0 0 0 118 25 352

Wdrn 1 1 0 0 0 0 0 i 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B971O2E BC3009B CD2A62D CD2A63A CD2A63B CD2A63C CD2A63D
CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M CD2A84N
CD2DllB CD2Bl5C CD5007B CDSO1O CD71O5A CD7203B CD7204B CD7205C
CD7205D CE21071 CE3111C CE3301A CE3411B E28005C ED7004B ED7005C
ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a comp ler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 352 tests were inapplicable for the reasons
indicated:

The following 201 tests are not applicable because they have floating-
point type declarations requiring more digits than System.MaxDigits:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L. .Y (14 tests)
C45421L..Y (:4 tests) C4552L. .Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (:5 tests)
C456411,..Y (14 tests) C 60i2L..Z (15 tps~s)

TLS INFOR:AT:ON

7 S.O E: rc- a~c D7.za~~ ca.).s Er: -:erenaa

tLi va-u c':Sse. KxNn saz ~S c::,lr S.,

C86001F, Is not applicable because rtcor.ps.iazion of Package SYSTEM is
not aklowec.

B8600.X, C45231D, anL CD7!0!G art not applicable because this
implementation doe.> not support any predefined integer type with a name
other than integer, LongInteger, or Short-Integer.

B8600Y is not applicable Deca-,e this implementation supports no
predefined fixed-point type other znan Duration.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than Float, Long_Float,
or ShortFloat.

B91001H is not applicable because address clause for entries is not
supported by this implementation.

CDIO09C, CD2A41A..B, CD2A4iE, CD2A42A..B, CD2A42E..F, CD2A421..J are not
applicable because size clause on float is not supported by this
implementation.

CDICO4B, CDICO4E, CD405iA..D are not applicable because representation
clause on derived records or derived tasks is not supported by this
implementation.

CDNA84B..7, CD2A84K..L are not applicable because size clause on access
type is not supported by this implementation.

CDICO4A, CD2A2iC..D, CD2A24C..D, CD2A22G..H, CD2A31C..D,
CD2A32C..D, CD2A32G..H, CD2A4IC..D, CD2A42C..D, CD2A42G..H,
CD2A5!C..D, CD2A52C..D, CDZA52G..H, CD2A53D, CD2A54D, CD2A54H are
not applicable because size clause for derived private type is not
supported by this implementation.

CD2A61A..D,F,H,!,J,K,L, CD2A62A..C, CD2A71A..D, CD2A72A..D, CD2A74A..D,
CD2A75A..D are not applicable because of the way this implementation
allocates storage space for on, component, size specification clause for
an array type or for a record type requires compression of the storage
space needed for all the components (without gaps).

CD4041A is not applicable because alignment "at mod 8" is not supported
by this implementation.

BD5006D is not applicable because address clause for packages is not
supported by this implementation.

CD5OI1B,D,F,H,L,N,R, CD5012C,D,G,H,L, CD5013B,D,F,H,L,N,R, CD5O!4U,W are
not applicable because address clause for a constant is not supported by
this implementation.

TEST INFORMATION

CD50 2J. CV5013S, CD5014S are not applicable necause address clause for
a nas-: Ls.nn- suqprotc.ny thi:s implemntar:on.

= Cjf:ic&s - 0-rass, ":.s 1"::PC ,rZt;on supports crEMaE w1-W

CE2 :2E is inapplicable necause znvs i.lementation supports create with
out fmie node for SEQUENTAL_10.

CE2102F is inapplicable because this implementation supports create with
inout file mode for DIRECTIO.

CE21021 is inapplicable because this implementation supports create with
in-file mode for DIRECT_10.

CE210J is inapplicable because this implementation supports create with
out-file mode for DIRECTIO.

CE2102N is inapplicable because this implementation supports open with
in_file mode for SEQUENTIAL IO.

CE21020 is inapplicable because this implementation supports RESET with
in-file mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports open with
out-file mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET with
outfile mode for SEQUENTIAL_IO.

CE21O2R is inapplicable because this implementation supports open with
inoutfile mode for DIRECTIO.

CE2102S is inapplicable because this implementation supports RESET with
inoutfile mode for DIRECT_10.

CE21027 is inapplicable because this implementation supports open with
infile mode for DIRECTIO.

CE2102U is inapplicable because this :plementation supports RESET with
infile mode for D:RECT_I0.

CE2102V is inapplicable because this implementation supports open with
outfile mode for DIRECT_10.

CE2102W is inapplicable because this implementation supports RESET with
outfile mode for DIRECT_10.

EE240lD and EE2401G are not applicable because USEERROR is raised when
the CREATE of an instantiation of DIRECT_10 with unconstrained type is
called.

CE240OH is not applicable because create with inout_file mode for
unconstrained records with default discriminants is not supported by
this implementation.

CE3102E is inapplicable because this implementation supports create with
in file mode for text files.

TEST INFORMATION

.?CE3ICF ::sn a,.ic~z DZcau Ch.rn)ior supports rtes or

ex r f s _: : C c a iiri t :: ol."s. r C -C6

*~~D c32. s:a .:atncau~sc F:: imp--tn,-_nz az .on suppor'J I~C' a CII!O

CE31021 is inapplzcable because tnis implementation supports create with
out _ftle mode for text files.

CE3102J is inapplicable because this implementation supports open with
in-file mode for text files.

CE3102K is inapplicable because this implementation supports open with
out _fie mode for text files.

CE3202A requires tne association of a name with the standard input and
output files. This is not supported by the implementation and USEERROR
is ralsed at execution. This behavior is accepted by the AVO pending a
ruling by the langage maintenance body.

TEST INFORMATION

-- t x,>Jcc -:.: S e tcsts w-. requurt i:ocifcations of coe,
processnc, or Ea1ua lor1 :n orcder to cobpensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where

legitimate implementation behavior prevents the successful completion of an

(otherwise) applicable test. Examples of such modlfications include: adding
a length clause to alter the default size of a collection; splitting a Class

B test into subtests so that all errors are detected; and confirming that

messages produced by an executable test demonstrate conforming behavior that

wasn't ant:cipated by the test (such as raising one exception instead of

another).

Modificat:ons were required for 51 tests.

The rest EA3004D when run as it is, the implementation fails to detect an

error on line 27 of test file EA3004D6M (line 115 of "cat -n ea3004d*").

This is because the pragma INLINE has no effect when its object is within a
package specification. However, the results of running the test as it is
does not confirm that the pragma had no effect, only that the package was
not made obsolete. By re-ordering the compilations so that the two
subprograms are compiled after file D5 (the re-compilation of the "with"ed
package that makes the various earlier units obsolete), we create a test
that shows that indeed pragma INLINE has no effect when applied to a
subprogram that is called within a package specification: the test then
executes and produces the expected NOTAPPLICABLE result (as though INLINE
were not supported at all). The re-ordering of EA3004D test files is
0-1-4-5-2-3-6.

The following 27 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:
B23004A B24007A B24009A B28003A B32202A B32202B B32202C B33001A B36307A
B37004A B49003A B49005A B61012A B62001B B74304B B74304C B74401F B74401R
B91004A B95032A B95069A B95069B BA1I01B2 BAI01B4 BC2001D BC3009A BC3009C
BD5005B

The following 21 tests were split in order to show that the compiler was
able to find the representation clause indicated by the comment
--N/A =>ERROR :

CD2A61A CD2A61B CD2A61F CD2A6lI CD2A6J CD2A62A CD2A62B CD2A71A CD2A72B
CD2A72A CD2A72B CD2A75A CD2A75B CD2A84B CD2A84C CD2A84D CD2A84E CD2A84F
CD2A84G CD2A84H CD2A841

Modified versions were produced for the following 2 tests, in order to have
the test run to completion and fully exhibit the test behavior:

In test C87B62B, an explicit STORAGESIZE clause was added for the
access type declared at line 68. This allows the test to execute
without raising STORAGEERROR and to meet its objective (test
overloading resolution in expression within length clause). The test
then produces the expected PASSED result.

T INFORMATION

in test CE3202A, the NAME (STANDARDINPUT) and NAME STANDARDOUTPUT)
calls at lines 25 and 29 were encapsulated in blocks with explicit
exception handlers that produce a NOTAPPLCABLE result in the
USE ERROR case, and a FAILED result in the OTHERS case. The test then
produces the expected NOTAPFLZCABLE result.
CE3202A requires the associaion of a name witn the standard input and

output files. This is not supported by the implementation and USE_ERROR
is raised at execution. This behavior is accepted by the AVO pending a
ruling by the langage maintenance body.

BA200IE requires that duplicate names of subunits with a common ancestor be
detected and rejected at compile time. This implementation detncts the error
at link time, and the AVO ruled that this behavior in acccptcaL.i

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by
the AlsyCOMP_002 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed
all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_002 using ACVC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration consisted of a HP 9000 S
350 operating under HP-UX, Version 6.2.

A tape containing all tests was taken on-site by the validation team for
processing. Tests that make use of implementation-specific values were
customized by Alsys after loading of the tape.

The contents of the tape were not loaded directly onto the host computer.
They were loaded on a VAX/VMS machine and transferred via a network to the
HP 9000 S 350. This is the reason why prevalidation tests were used for the
the validation. Those tests were loaded by Alsys from a magnetic tape
containing all tests provided by the AVF. Customization was done by Alsys.
All the tests were checked at prevalidation time.

Integrity of the validation tests was made by checking that no modification
of the test occured after the time the prevalidation results were
transferred on cartridge tape for submission to the AVF. This check was
performed by verifying that the date of creation (or last modification) of
the test files was earlier than the prevalidation date. After validation was
performed, 80 source tests were selected by the AVF and checked for
integrity.

The full set of tests was compiled, linked, and all executable tests were
run on the HP 9000 S 350. Results were printed from the host computer.

The compiler was tested using command scripts provided by Alsys and reviewed
by the validation team. The compiler was tested using all default option
settings except for the following:

OFTION / SWITCH EFFECT

FLOAT=MC68881 Floating point operations use the MC68881 arithmetic
coprocessor

CALLS=INLINED Allow inline insertion of code for subprograms and take
pragma INLINE into account

REDUCTION=PARTIAL Perform some high level optimizations on checks and
loops

TEST INFORMATION

EXPRESSION=PARTIAL Perform some iov level optimizations on common
subexpressions and register allocation

Tests were compiled, linked, and executed (as appropriate) using a single

computer. Test output, compilation listings, and job logs were captured on

cartridge tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test S:te

Testing ras conducted at Alsys, SA. in La Celle Saint Cloud, FRANCE and was
completed on 14 l'arch 1989.

DECLARATION OF-CONFORMANCE

APPEND-IX A

DECLARAT:ON OF CONFORM~ANCE

Alsys has submitted the following
Declaration of Conformance concerning the AlsyCOMP_002.

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la DMfense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_005 Version 4.3

Host Architecture: SUN 3/260
HOST OS and Version: Sun OS release 3.2

Target Architecture: SUN 3/260
Target OS and Version: Sun OS release 3.2

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys is the owner of
record of the Ada language compiler(s) listed above and, as such, is
responsible for maintaining said compiler(s) in conformance to ANSI/MIL-STD-
1815A. All certificates and registrations for Ada language compiler(s)
listed in this declaration shall be made only in the owner's corporate name.

' -Date: 3n MI19e9
Alsys
Etienne Morel, Managing Director

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

.. ...__ __ __ _ __ __ _Date: 30 MA1198
Alsys
Etienne Morel, Managing Direc.

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the :tst is run. The values used for this validation are given below.

Name and Meaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIG_IDl 'X234567890'&(24*'1234567890')&'12341'
Identifier the size of the
maximum input line length
with varying last character.

SB:G_ID2 'X234567890'&(24*' :234567890')&'12342'
Identifier the size of the
maximum input line length
with varying last character.

$BIG_ID3 'X234567890'&(!1*'1234567890')
&'12345XX3XX12345'&(12*'1234567890')'

Identifier the size of the
maximum input line length
with varying middle character.

SBIG_ID4 'X234567890'&(1!*'1234567890')"
&'12345XX4XX12345'&(12*'1234567890')'

Identifier the size of the
maximum input line length
with varying middle character.

TEST PARAMETERS

Name and Meaning Value

SBIG_INT_LIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

$BIG_REAL_LIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

SBIG_STRINGI ."&'X234567890'&(Il*'1234567890')&'"
A string literal which when
catenated with BIGSTRING2
yields the image of BIG_IDI.

SBIG_STRING2 '"'&(13*'1234567890')&'12341'&'.
A string literal which when
catenated to the end of
BIGSTRING1 yields the image
of BIGIDI.

SBLANKS (235
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_LAST 2_147_483_647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

SDEFAULTMEMSIZE 2**32
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTOR_UN:T 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULT_SYSNAME UNIX
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINE_DELTA.

IEST PARAMETERS

Name ani Meaning Value

SFIELD_LAST 255
A universal integer literal whose
value is TEXT I,.FIELD'LAST.

$FIXEDNANE NO SUCH TYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NANE NOSUCHTYPE
The name of a predefined
float:ng-pocnt type other than
FLOAT, SHORT_FLOAT, oi
LONGFLOAT.

SGREATER_THANDURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION.LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST 100_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY 127
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTZRVALFILE_NAMEI //*/fl
An external file name specifying
a non existent directory

SILLEGAL_EXTERNAL_FILENAME2 //*/ f2
An external file name different

from $ILLEGALEXTERNALFILENAMEl

SINTEGER_FIRST -32768
A universal integer literal
whose value is :NTEGER'FIRST.

SINTEGER_LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

SINTEGER_LASTPLUS_! 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

TEST PARAMETERS

Name and Meaning Value

SLESS_THAN_DURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATIOW'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST -100_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY 1
An integer iiteral whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

SMAX_DIGITS 15
Maximum digits supported for
floating-point types.

SMAX_IN_LEN 255
Maximum input line length
permitted by the implementation.

$MAX_INT 2_147_483_647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX_INT_PLUS_1 2_147_483 _3
A universal integer literal
whose value is SYSTEM.MAXINT+I.

SMAX_LEN_IN._BASED_LITERAL 2:' & (250 * '0') & '1:
A universal integer based
literal whose value is 2:11:
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

SMAX_LEN_REALBASEDLITERAL '16:' & (248 * '0) & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAX IN_LEN long.

TEST PARAMETERS

Name and Meaning Value
------------------------- ---------------------------------------
SMAX_STRING_LITERAL ''&(25* '123456789c')&'23'&
A string literal of size
MAXINLEN, including the quote
characters.

SMIN_INT -2147483648
A universal integer literal
whose value is SYSTEM.M!NINT.

SI:N_TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAnE NO_SUCH_TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
LONGFLOAT, or LONG_:NTEGER.

SNAME_LIST UNIX
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAX_INT.

SN&E_MEM_S:ZE 2**32
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULTMEM_SIZE. If there is
no other value, then use
DEFAULTMEM_SIZE.

SNEW_STORUNIT 8
An integer literal whose value
is a permitted argument for
pragma storageunit, other than
DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

TEST PARAMETERS

Name and Meaning Value

SNEWSYS_NAME UNIX
A value of the type SYSTEM.NAME,
other than SDEFAULT_SYSNAME. if
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0
A real literal whose value is
SYSTE.TICK.

4ITHDRAWN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form A1-
ddddd is to an Ada Commentary.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE in line 203; but
line 203 contains text that follows the pragma, and it is this that must
appear at the top of the page.

A39005G
This test unreasonably expects a component clause to pack an array component
into a minimum size (line 30).

B97102E
Ths test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wait alternative (line 31).

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the s:ze of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a derived sub-
program (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85, 86 & 96,
86 & 96, and 58, resp.).

WITHDRAWN TESTS

CD2B.5C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2:1IB
This test gives a SMALL representation clause for a derived fixed-point type
(at line 30) that defines a set of model numbers that are not necessarily
represented in the parent type; by Commentary Ai-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

CD5OO7B
This test wrongly expects an implicitly declared subprogram to be at the
the address that is specified for an unrelated subprogram (lint 303).

ED7004B, ED7005C & D, ED7006C & D L5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;
the AVO withdraws these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change .by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation
is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification of
storage to be reserved for a task's activation as though it were like the
specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be distinguished
when read from a file--DATAERROR is expected to be raised by an attempt to
read one object as of the other type. However, it is not clear exactly how
the Ada standard 14.2.4:4 is to be interpreted; thus, th:s test objective is
not considered valid. (line 90)

CE3!IlC
This test requires certain behavior, when two files are associated with the
same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to ENDOFLINF & ENDOFPAGE that have no
parameter: these calls were intended to specify a file, not to refer to
STANDARD-INPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST in
ord':r to check that LAYOUT ERROR is raised by a subsequent PUT operation.
But the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
deper.dent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP_002, Version 4.3, are described in the following sections, which
discuss topics in Appendix - of the Ada Standard. Implementation-specific
portions of the package .-.DARD are also included in this appendix.

package STANDARD is

type INTEGFn is range -32_768 .. 32_767;

type SHORTINTEGER is range -128 .. 127;

type LONGINTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-2#I.lll_11111_2. ! 1_11iIIIII1#E+127

2*1.1:1i1111I1111I11I.1_1111_IIII#E+!27;

type LONGFLOAT is digi:s 15 range

type DURATION is delta 2#0.000000000_000_01# range --86_400.0 ..86_400.0;

end STANDARD;

APPENDIX F

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES
Programs written in Ada can interface with external subprograms written in another

language, by use of the INTERFACE pragma. The format of the pragma is:

pragma INTERFACE (language name ,Ada subprogram name

where the languagename can be any of

* Assembler

UC

* Fortran

* Pascal

It should be emphasized that in the discussion which follows the standard HP products
are being considered. Compiler products other than those provided by HP or Alsys may
not conform to the conventions given below.

The Ada subprogramname is the name by which the subprogram is known in Ada. For
example, to call a subprogram known as FASTFOURIER in Ada, written in C, the
INTERFACE pragma is:

pragma INTERFACE (C, FASTFOURIER);

To relate the name used in Ada with the name used in the original language, the Alsys
Ada compiler converts the latter name to lower case and truncates it to 32 significant
characters.

To avoid naming conflict with routines of the Alsys Ada Executive, external routine
names should not begin with the letters alsy (whether in lower or upper case or a
combination of both).

To allow the use of non-Ada naming conventions, such as special characters, or case
sensitivity, an implementation-dependent pragma INTERFACE-NAME has been
introduced:

pragma INTERFACENAME (Ada subprogram name, name_string);

so that, for example,

pragma INTERFACE-NAME (FASTFOURIER, "fft");

AlsyCOMP Appendix F Version 4.1 1

will associate the FASTFOURIER subprogram in Ada with the C subprogram fft.

In order to conform to the naming conventions of the UNIX Linker, an underscore is
prepended to the name given by namestring, the result is then truncated to 255
characters.

The pragma INTERFACENAME may be used anywhere in an Ada program where
INTERFACE is allowed (see (13.9]). INTERFACENAME must occur after the
corresponding pragma INTERFACE and within the same declarative part.

2 IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma INTERFACE

This pragma has been described in the previous section.

Pragma INIPROVE and Pragma PACK

These pragmas are discussed in sections 5.7 and 5.8 on representation clauses for arrays
and records.

Note that packing of record types is done systematically by the compiler. The pragma
pack will affect the mapping of each component onto storage. Each component will be
allocated on the logical size of the subtype.

Example:

type R is
record

CI : BOOLEAN; C2: INTEGER range I .. 10;
end record;

* pragma PACK(R);
-- the attribute R'SIZE returns 5

Pragma INDENT

This pragma is only used with the Alsys Reformatter; this tool offers the functionalities
of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

causes the Reformatter not to modify the source lines after this pragma.

pragma INDENT(ON)

causes the Reformatter to resume its action after this pragma.

Pragmas not implemented

AlsyCOMP Appendix F Version 4.1 2

The following pragmas are not implemented:

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGE UNIT
SYSTEMNAME

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

In addition to the Representation Attributes of [13.7.2] and [13.7.3], there are four
attributes which are listed under F.5 below, for use in record representation clauses.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

5 A constant that is implemented as an immediate value i.e., does not have any

space allocated for it.

a A package specification that is not a library unit.

M A package body that is not a library unit or a subunit.

4 PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

" a complete listing of the specification of the package SYSTEM

" a list of the implementation-dependent declarations in the package
STANDARD.

package SYSTEM is

-- Standard Ada definitions

type NAME is (UNIX);
SYSTEM NAME constant NAME :- UNIX;
STORAGE_UNIT constant : 8;
MEMORYSIZE : constant := 2"32
MIN INT • constant "- -(2"'31)
MAX_INT : constant :- 2*31-1
MAXDIGITS constant :- 15
MAXMANTISSA • constant :- 31;
FINEDELTA • constant :- 2*1.0*e-31
TICK : constant :- 1.0;

AlsyCOMP Appendix F Version 4.1 3

type ADDRESS is private;

NULLADDRESS: constant ADDRESS;

subtype PRIORITY is INTEGER range 1..127;

Address arithmetic

function TO LONG INTEGER (LEFT: ADDRESS)
return LONGINTEGER;

function TOADDRESS (LEFT: LONGINTEGER)
return ADDRESS;

function "+" (LEFT: LONGINTEGER; RIGHT: ADDRESS)
return ADDRESS;

function "+" (LEFT: ADDRESS; RIGHT: LONGINTEGER)
return ADDRESS;

function "-" (LEFT: ADDRESS; RIGHT: ADDRESS)
return LONG INTEGER;

function "-" (LEFT: ADDRESS; RIGHT: LONGINTEGER)
return ADDRESS;

function "mod" (LEFT: ADDRESS; RIGHT: POSITIVE)
return NATURAL;

function "<" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function "<-" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ">" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function *>-" (LEFT: ADDRESS; RIGHT: ADDRESS)
return BOOLEAN;

function ISNULL (LEFT: ADDRESS)
return BOOLEAN;

function WORD ALIGNED (LEFT: ADDRESS)
return BOOLEAN;

function ROUND (LEFT: ADDRESS)
return ADDRESS;

-- Return the given address rounded to the next lower even value

procedure COPY (FROM: ADDRESS; TO: ADDRESS; SIZE: NATURAL);
-- Copy SIZE storage units. The result is undefined if the two areas
= overlap.

AisyCOMP Appendix F Version 4.1 4

-- Direct memory access

generic
type ELEMENT TYPE is private;

function FETCH (FROM: ADDRESS) return ELEMENTTYPE;
-- Return the bit pattern stored at address FROM, as a value of the
-- specified ELEMENT TYPE. This function is not implemented
-- for unconstrained array types.

generic
type ELEMENTTYPE is private;

procedure STORE (INTO: ADDRESS; OBJECT: ELEMENTTYPE);
-- Store the bit pattern representing the value of OBJECT, at the
-- address INTO. This function is not implemented for
-- unconstrained array types.

private

-- private part of the system

end SYSTEM;

The package STANDARD

The following are the implementation-dependent parts of the package STANDARD:

type SHORT INTEGER is range -(2**7) .. (2*'7 -1);
type INTEGER is range -(2**5) .. (2**15 -1);
type LONGINTEGER is range -(2*31) .. (2"31 - 1);

type FLOAT is digits 6 range
-(2.0 - 2.0**(-23)) * 2.0127
+(2.0 - 2.0**(-23)) * 2.0"'127;

type LONGFLOAT is digits 15 range
-(2.0 - 2.0"*(-51)) * 2.0"'1023
+(2.0 - 2.0"*(-51)) * 2.0"'1023;

type DURATION is delta 2.0"*(-14) range -86400.0 .. 86_400.0;

5 TYPE REPRESENTATION CLAUSES

The representation of an object is closely connected with its type. For this reason this
section addresses successively the 'representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is described.

AlsyCOMP Appendix F Version 4.1 S

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

a a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

a a record representation clause, when the object is a record or a record
component

0 a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

5.1 Enumeration Types

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, it is otherwise even byte aligned.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is even when its subtype is
even byte aligned.

5.2 Integer Types

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

AlsyCOMP Appendix F Version 4.1 6

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to a
bits, it is otherwise even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is even when its subtype is even
byte aligned.

5.3 Floating Point Types

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subiype

A floating point subtype is always even byte aligned.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is always even, since its
subtype is even byte aligned.

5.4 Fixed Point Types

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is
otherwise even byte aligned.

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is even when its subtype is
even byte aligned.

AIsyCOMP Appendix F Version 4.1 7

5.5 Access Types

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 3, bits long.

Alignment of an access subtype.

An access subtype is always even byte aligned.

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always even, since its subtype is
even byte aligned.

5.6 Task Types

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Alignment of a task subtype

A task subtype is always even byte aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always even, since its subtype is even byte aligned.

5.7 Array Types

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype is even byte aligned if the subtype of its components is
even byte aligned. Otherwise it is byte aligned.

AisyCOMP Appendix F Version 4.1 8

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is as given in
the following table:

relative dispLacement of components

even numoer odd number not a wIhote
of bytes of bytes number of bytes

even byte even byte byte bit

subtype byte byte byte bit
a I i gnment bit bit bit i bit

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is even when its subtype is even byte aligned.

5.8 Record Types

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the ot-ject has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise
the record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause applies to
its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the
record subtype is byte aligned.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause An alignment
clause can specify that a record type is byte aligned or even byte aligned.

AisyCOMP Appendix F Version 4.1 9

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

6 ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program generated by the compiler. The program accesses the object using the address
specified in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 8 kb.

6.2 Address Clauses for Program Units
Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

6.4 Address Clauses for Constants

Address clauses for constants are not implemented in the current version of the
compiler.

7 UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record types without
defaulted discriminants are not allowed as target types. Access to unconstrained arrays
are not allowed as target or source types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal.

If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

AisyCOMP Appendix F Version 4.1 10

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source
operand: the result has the size of the source.

" if an unchecked conversion is achieved of a composite source type to a scalar
or access target type, the result of the function is a copy of the source
operand: the result has the size of the target.

8 INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the im lementation-specific nsne,!t of the iM":-ouiut
system are described.

8.1 Introduction

In Ada, input-output operations (10) are considered to be performed on objects of a
certain file type rather than being performed directly on external files. An external file
is anything external to the program that can produce a value to be read or receive a
value to be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestation is known as an external file. An external file is
characterized by

" Its NAME, which is a string defining a legal path name under the current
version of the operating system.

" Its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and THE FORM appear explicitly as parameters of the Ada CREATE
and OPEN procedures. Though a file is an object of a certain file type, ultimately the
object has to correspond to an external file. Both CREATE and OPEN associate a
NAME of an external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages [14].

SEQUENTIAL_10 A generic package for sequential files of a single element

type.

DIRECT_10 A generic package for direct (random) access files.

TEXT_10 A generic package for human readable (text, ASCII) files.

IOEXCEPTIONS A package which defines the exceptions needed by the
above three packages.

AlsyCOMP Appendix F Version 4.1 l1

The generic package LOW_LEVEL_10 is not implemented in this version.

The upper bound for index values in DIRECTIO and for line, column and page
numbers in TEXT_10 is given by

COUNT'LAST = 2*31 -1

The upper bound for field widths in TEXT 10 is given by

FIELD'LAST = 255

8.2 The FORM Parameter

The FORM parameter of both the CREATE and OPEN procedures in Ada specifies the
characteristics of the external file involved.

The CREATE procedure establishes a new external file, of a given NAME and FORM,
and associates it with a specified program file object. The external file is created (and
the file object set) with a specified (or default) file mode. If the external file already
exists, the file will be erased. The exception USEERROR is raised if the file mode is
INFILE.

Example:

CREATE(F, OUTFILE, "MY FILE",
FORM ->
"WORLD -> READ, OWNER -> READWRITE");

The OPEN procedure associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the Ada exception USEERROR is
raised.

The FORM parameter is a string, formed from a list of attributes, with attributes
separated by commas (,). The string is not case sensitive (so that, for example, HERE
and here are treated alike). (FORM attributes are distinct from Ada attributes.) The
attributes specify:

" File protection

" File sharing

" File structure

" Buffering

" Appending

" Blocking

" Terminal input

AisyCOMP Appendix F Version 4.1 12

The general form of each attribute is a keyword followed by => and then a qualifier.
The arrow and qualifier nay sometimes be omitted. The format for an attribute specifier
is thus either of

KEYWORD

KEYWORD => QUALIFIER

AisyCOMP Appendix F Version 4.1 13

